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Summary 

Integral (ITR) and differential (DTR) turbidity ratio 
methods are shown to be simple and efficient techniques 
suitable for estimation of the size and number of scatterers 
in the static and dynamic systems, mainly during processes 
consisting in the formation or disappearance of a single 
component in a complex macromolecular or colloid system. The 
DTR method exceeds the ITR method in the resolving power and 
reliability; however, their combination seems to be the 
optima] approach. 

I. Introduction 

The turbidity T contains intact information about scat- 
terers in the system, provided that their contributions are 
mutually independent (VAN DE HULST 1957, KERKER 1969). This 
holds also for the turbidity ratio methods (cf. SEDLACEK 1967, 
1979; DU~EK and SEDL~CEK 1969, SEDLACEK et al. 1979); also 
some other limitations competent for application of the 
Lorenz-Mie theory (HELLER and PANGONIS 1957, VAN DE HULST 1957, 
KERKER 1969) must be obeyed. 

In this paper, the integral turbidity ratio method (ITR) 
has been extended to provide some analytical data character- 
izing a two-component system (cf. Example 2). For an analysis 
of complicated systems, a new simple technique called the 
differential turbidity ratio method (DTR) has been described 
in detail (cf. Example 3). 

2. Estimation of the Size of Scatterers 

The usual ITR method consists in measuring the tur- 
bidities T a and T b (absolute or relative, i.e. direct photo- 
meter readings) at the two wavelengths I a and Ib, which yields 

Tab = Ta(la,~a,m)/Tb(Ib,~b,m) = ~-2(b-a)Sa(~a,m)/Sb(~b,m); (I) 

I is the wavelength in the medium, e = nL/l is the relative 
size and L is the diameter of the spherical or equivalent 
scatterers, m is their relative refractive index and S is the 
turbidity function identical with Heller's Z). Pairs of I a, I b 
and ~a' eb are bound by the sequence condition of a constant 
quotient K = 1.2531, e.g. 10 (= 10K0) = 326.7 rum; 11 = 10KI ; 
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12 = I0 K2 (corresponding to the wavelengths in vacuo, A 0 = 
435.8; A 1 = 546.1; A9 = 684.3 nm), which allows us to use the 
same tables* for all~pairs of wavelengths. In this way, three 
turbidity ratios T01, T12, T02 and adequate sizes L01, L12, L02 
may be obtained (for details see SEDL~CEK et al. 1978, 1979, 
ZIMMERMANN and SEDL~0EK 1981). If the L's are nearly equal, the 
system may be seen as monodisperse or slightly polydisperse, 
and vice versa. 

3. Estimation of the Concentration of Scatterers 

The required concentration c e (g/100 g) and/or the number 
N e (cm-1) of scatterers can be obtained by inserting the 
experimental turbidity T e (absolute only) into an appropriate 
relation 

Ce=Te/[T/c] ; Ne=Te/[T/N]=Te/R=2~Te/12S=4~Te/~212< 12) 

where the subscript e is used to discern the experimental 
quantities from the theoretical ones (extrapolated for c§ 
R is the scattering cross-section, S = 2zR/12 and K is the 
scattering coefficient. The theoretical values of [T/c], R, S 
and K corresponding to the respective scatterer size (obtained 
by the turbidity ratio method) can be calculated or found by 
interpolation from appropriate tables (HELLER and PANGONIS 
1957, PANGONIS et al. 1957, VERNER et al., ZIMMERMANN and 
SEDLACEK 1981, etc.). 

4. Integral Turbidity Ratio Method: An Extension 

The ITR method deals with a summation of the individual 
(usually Unknown) turbidity contributions of the components 
present in a complex system. Thus, at best an average size of 
all the scatterers may be found (being representative for 
a system with the known distribution or definite for a mono- 
disperse system); if the postulates of the Lorenz-Mie theory 
are not fitted, only an apparent or equivalent size is to be 
expected. The averaged data may differ significantly from 
those for the individual components as is demonstrated in 
Example I. 

EXAMPLE I: A system is available of two monodisperse com- 
ponents, A and B, their sizes found by the ITR method at 10 

B = 624 nm and 11 being LAab = L0 IA = 208 nm (= 2~0) and L01 

(= 6~0), and their mass fractions x A = 0.80 and x B = 1-x A =0.20 

of the total concentration c = I• g. The ratio of the 

measured integral turbidities T i ~ T AB is defined by (for the 

given case T AB AB, AB = T a /T b a~0 b~1) ab ' ' 

*By inadvertence, the basic wavelength given in the tables was 
11 = 409.3 nm instead of the correct value, 10 = 326.7 nm. 
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TAB = {XA[T/c]A + (I_XA) [T/c]B}/{XA[TIc]A + B ab a a b (1-XA) [T/C]b}" (3) 

As the [T/c]'s are the limiting values (c+0) and (T/c) is 
usually not concentration dependent, we may use (T/c) A, 

B A B 
(T/c) or directly T , T instead (SEDLACEK 1979). Inserting 
into eq. (3) the appropriate values* of specific turbidities 

A B given above, we obtain related to the sizes L01 and L01 
AB 

= 402 nm (= 3.87 s 0) T0 lAB = 1 . 6 0 0  w h i c h  c o r r e s p o n d s  t o  L01 �9 

The size found in this way is certainly useful for preliminary 
considerations, but can be hardly seen as really representa- 

B 
A = 208 and L01 = rive for a system of the two components L01 

= 624 rum. 
Nevertheless, also the ITR method may, under favourable 

conditions, render more information than the average size of 
all the scatterers only. This is shown in Example 2 where 
from four characteristics to be found (sizes of the components 
A and B, total concentration and mass fraction of individual 
components) only one is known (sizes of the component A or B). 

EXAMPLE 2: The same system as above is considered in this 
example, except that only the size of A (= 208 nm) is known 
or may be estimated (e.g. under conditions when the component 
B is not yet or no longer present in the system). The measured 
quantities are the integral turbidities only (obtained for 10 

AB 1 600 and 11): T~ B = 0.252 and T~ B = 0.1575; their ratio T01 = . 

AB 402 nm as above. Using the tables of corresponds to L01 = 

specific turbidities,** we find for L = 402 nm (= 3.87 s 0 = 

= 3.1 el ) the value of [T/c] AB = 256. As (T/c) is usually 
independent of concentration, we may calculate the total con- 
centration c by inserting the experimental value of 
AB 

T O = 0.252 in eq. (2) ; thus c = 0.252/256 ~ I• -3 g/100 g, 
which is nearly identical with that comprised originally in 

A 
the simulated example. Using the tables, we estimate T01 = 

A A 
= T0/T 1 ( f r o m  t h e  known s i z e  L~I = 208 nm = 2~ 0 = 1 . 5 9 6 ~  1) a n d  

find the respective [T/c]~ = 173.8 and [Y/c]? = 98.2. we NOW 

we follow the instructions and obtain data as given in Table 
I. Since the size found for a mixture of A and B is consider- 

ably higher than that of the component A (LAB>LA), component 
B must be represented by much larger scatterers than com- 

ponent A (LB>LA). �9 The concentration Of A should prevail over B 

if LB>596 nm. However, from a calculation made for ~A=~B=0.5 

[~ /c ] l~  = 394 .81 .  T a b u l a t e d  f o r  X1; [ ~ / c ] 0  = 1.2531 [ T / c ]  1. 
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B 
we obtain a s = 4.66, i.e. L B = 485 nm only. This is why we 
choose ~A>D~5 for a set of simulated compositions of A and B. 
Then we continue to calculate functions (given in the left 
column) for the individual compositions; instructions for 
calculation are given in the right column. For [T/c] AB 

A 252 and = [T/c]~ B = 157.5, "experimental" values, [ T / c ] ~  B 
are used in the calculation. 

TABLE I: Integral turbidity ratio method: data and procedure 

XA (sim) 

XB (sim) 

XA [T/c]A0 

B 
XB [T/c] 0 

XA [T/c]A1 

XB [T/c] BI 

B 
TO1 
B 

c~ 0 

[~Ic]~ 
B 

[T/C] 1 

x A ( c a l c )  

0.5 0.6 0.7 0.8 0.9 

0.5 0.4 0.3 0.2 0.1 

86.9 104.3 121.7 139.0 156.4 

165.1 147.7 130.3 113.0 

49. I 58.9 68.7 78.5 

108.4 98.6 88.7 78.9 

fraction of A 

fraction of B 

AB [T/c]A 
95.6 = [T/C] 0 -x A 0 

88.4 

69.1 = [T/C] AB [T/C] A 
I -XA 1 

1.523 1.498 1.468 1.431 1.384 = [T/c] B0/[T/c]BI 

B 
4.66 5.10 5.49 6.03 6.60 for T01 

B 
485.3 518.2 542.1 566.4 584.9 for s 0 

B B 
318.6 345.9 369.2 395.7 422.8 = [T/c]0/T01 

0.595 0.679 0.745 0.800 0.846 from eq. (3) 

Final data for x A were calculated according to the 
relation (obtained by a rearrangement of eq. (3)) 

-1 , A _AB A, AB B B, 
I = iTa-TabTB;/(TabTb-Ta;_ = Y XA'- 

(4) 

(where T is used instead of (T/c) = [T/c]), from which the 
quantities of interest may be obtained: x A = (1 + y)-l, 

XB/X A = Y; for the given case a ~ 0, b H 1. By comparison of 

the simulated and calculated x_, the best accordance was 
achieved for x A = 0.8. General~y, when differences 
XA(Calc) - ~A(sim) are plotted against ~A(sim), the inter- 
section may give the desired fraction XA" Thus, the data 

searched for are as follows: c = I• g; L B = 624 nm 
(= 6.03 e0); x A = 0.8, x B = 0.2. 
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5. Differential Turbidity Ratio Method 

The DTR method (called alternatively the turbidity dif- 
ference method) is based on a measurement of the difference 
between the "original" and "final" turbidities (through which 
any information about the respective states of a system is 
mediated) anywhere on the time scale coordinated to the changes 
occurring in the system. Suitable for being treated by this 
method is a system composed of various types of scatterers, 
where only one component is responsible for the process 
observed leading to its formation or disappearance, and/or to 
its increase (decrease) in size. 

To reach the aim, we measure the integral turbidity as 
a function of time (continuously or successively); thus, data 
are obtained representing the summation of contributions of 
all the scatterers acting at each definite time t (or a tem- 
perature 8, etc., if correlated with t) within the available 
interval. For the sake of a step by step analysis of the 
process, the whole interval is to be divided into several sub- 
intervals, the number of which depends on the course and 
specificity of the process. Obviously, the data must be cor- 
rected by isochronous interpolation to be applicable for this 
purpose. As a result, a set of integral turbidities 

i i i 
T(0 ) , T(1),...,i(n ) is obtained coordinated to the respective 

times t(0),t(1),...,t(n ) (subscripts in parentheses delimit 

the individual time intervals correlated with the states of 
the system under investigation). Now, the turbidity dif- 
ferences AT i are calculated for whatever time interval and 
between any pairs of integral turbidities Ti: these data are 
related to the process only, which has led to the turbidity 
differences within the given time interval. As the trend of T i 
values is obvious, absolute values of the turbidity differ- 
ences may be used. The differential turbidities T a = AT l so 
obtained carry encoded information about changes in the size 
and concentration (or number) of scatterers within the 
individual intervals, and thus about the mechanism of the 
process studied. To excerp~ these two characteristics, the 
differential turbidities T = instead of the integral tur- 
bidities T I are evaluated in terms of the turbidity ratio 
method. The preferential use of just this method is sub- 
stantiated by a crucial fact that the turbidity ratios are 
usually independent of concentration; this makes possible an 
estimation of the size and concentration of scatterers in 
general and during the process in particular. 

The procedure just described may be illustrated by the 
following simulated example: 

EXAMPLE 3: With a change in temperature, a process leading 
to an increase in turbidity sets in a complex system. We assume 
that the turbidity increase is correlated with the rising con- 
centration of the component B, while the turbidity of the 
remaining one or more components being designed as a whole by 
A remains nearly constant. A question arises whether this 
picture is correct and, if so, what are the sizes and concen- 
trations of the components A and B or whether the two or more 
components are present. This should be answered by the 
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turbidity ratio method in a simulated experiment. 
In the "experiment", integral turbidities are measured 

at the end of each of four time intervals (I) chosen, (0) 
being related to the original system. The results obtained by 
the ITR method are in Table 2. 

TABLE 2: Integral turbidity ratio method: data 

AB s 0 L,nm 103Cap p (I) T O T 1 T01 

(0) I .390 0.786 1.768 2.00 208 8.0 
(I) I .956 1.181 I .656 3.03 315 6.2 
(2) 2.522 1.576 1.600 3.88 403 6.1 
(3) 3.653 2.365 I .545 4.42 460 7.8 
(4) 5.913 3.944 1.499 5.08 528 11.5 

All data are calculated from the integral turbidities T~ and 
T~: information is now available on the average size of scat- 
terers and on their apparent concentration. 

Corolla~ 1: With increasing integral turbidities T i the 
average size of scatterers is rising, which means that either 
the scatterers already present become larger, or new, much 
larger scatterers are formed continuously, so that at least 
two components different in size contribute to the effect 
observed. The apparent concentration does not follow the 
increase in turbidity and the average size of scatterers, and 
thus confirms that the system is no~ homogeneous. 

Ten differential turbidities T ~ may be obtained from all 
combinations of pairs of the five integral turbidities T I. 
Using these data, the sizes and concentrations of scatterers 
may be calculated (cf. Sections 2 and 3), responsible for the 
increase in turbidity within the individual intervals~(Table 3). 

TABLE 3: Differential turbidity ratio method: data for 
scatterers responsible for the increase in turbidity 

A T~=AT0 TI=ATId T01 s 0 L,nm I03(Ac) 

(1)-(0) 0.566 0.395 1.433 6.0 624 1.0 
(2)-(0) 1.132 0.790 1.433 6.0 624 2.0 
(3)-(0) 2.263 1.579 1.433 6.0 624 4.0 
(4)-(0) 4.523 3.158 1.432 6.0 624 8.0 
(2)-(I) 0.566 0.395 1.433 6.0 624 1.0 
(3)-(1) 1.697 1.184 1.433 6.0 624 3.0 
(4)-(I) 3.957 2.763 1.432 6.0 624 7.0 
(3)-(2) 1.131 0.789 1.433 6.0 624 2.0 
(4)-(2) 3,391 2.368 1.432 6.0 624 6.0 
(4)-(3) 2.260 1.579 1.431 6.0 624 4.0 

Corolla~ 2: The scatterers responsible for the respective 
differential turbidities T d are homogeneous in size (L = 624 
nm) within the intervals (I)-(0), (2)-(I), (3)-(2), (4)-(3) 
and also (I)-(0) to (4)-(0); this is confirmed also by data 
for the remaining intervals. The total concentration c 
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(g/100 g) of the newly created scatterers (component B) 
increases from lxi0 -3 to 8xi0 -3. Should the size found for 
individual intervals be rising (decreasing), a continuous 
increase (decrease) in the size of the component B or appear- 
ance of a third component C with larger (smaller) scatterers 
is to be expected. 

Now, let us suppose that the original system measured at 
(I) = (0) is identical with the homogeneous component A; then 

a0 = 2.00 (L = 208 nm), [T/c]~ = 173.8 and [T/c]AI = 98.2 

A = 1.769) Component B, as estimated by the DTR method, is (T01 

characterized by a0 = 6.00 (L = 624 nm) [T/c] B = 565 7 and 
B B ' 0 " 

[T/c] I = 394.8 (T01 = 1.433). By inserting these data into 

eq. (4) we calculate x A for the systems related to (I) = (I) 
AB 

to (4) (Table 4) using the ITR data (T01) from Table 2. 

TABLE 4: Estimation of fraction x A, concentration c A and 
homogeneity of the component A 

(I) x A x B XA/X B I03CB I03CA 103c 

(0) I .000 - - 8.00 8.00 (8.0) 
(1) 0.887 0.113 7.85 (8.0) 1.0 7.85 8.75 (9.0) 
(2) 0.798 0.202 3.95 (4.0) 2.0 7.90 9.90 (10.0) 
(3) 0.667 0.333 2.00 (2.0) 4.0 8.00 12.00 (12.0) 
(4) 0.495 0.505 0.98 (1.0) 8.0 7.84 15.84 (16.0) 

Correct data for XA/X B and total concentration c are given in 
parentheses. 

Corollary 3: The concentration of B in the system related 
to (I) = (I) (Tables 3 and 4) is I• -3 g/I00 g; thus, the 
concentration of A must be 7.85xi0 -3 g/100 g which is nearly 
identical with that found in Table 2. Data for systems cor- 
responding to (I) = (2), (3), (4) behave in a similar manner. 
The homogeneity of the component A may be regarded as proved 
(Table 4, column CA). Should different concentrations be found 
instead of their approximate identity, heterogeneity of the 
component A is to be expected. 

6. Concluding Remarks 

The model examples given in this paper cannot respect 
experimental errors usual in this type of measurements. Also, 
differences between the expected and really found values (due 
to their rounding off during evaluation of the primary data) 
cannot substitute the role of experimental errors which may be 
decisive for the applicability of the method tested. However, 
more persuasive are the results obtained by using both 
methods for the analysis of the swelling-deswelling processes 
in the poly(2-hydroxyethyl methacrylate) gel swollen in 
butanol, induced by an increase (decrease) in temperature 
(SEDLA~EK and KO~K 1982). 
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It was shown that the ITR method is able to solve more 
complicated problems than expected but, when applied to 
dynamic systems, it can hardly compete with the DTR method 
which exceeds the former especially in the resolving power, 
accuracy and reliability. A combination of the ITR and DTR 
methods seems to be the most efficient approach. 
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